Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis

نویسندگان

  • Pilar Prieto-Dapena
  • Concepción Almoguera
  • José-María Personat
  • Francisco Merchan
  • Juan Jordano
چکیده

HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis.

Within the Arabidopsis thaliana family of 21 heat stress transcription factors (Hsfs), HsfA9 is exclusively expressed in late stages of seed development. Here, we present evidence that developmental expression of HsfA9 is regulated by the seed-specific transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3). Intriguingly, ABI3 knockout lines lack detectable levels of HsfA9 transcript and protein...

متن کامل

The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs.

Most plant seeds tolerate desiccation, but vegetative tissues are intolerant to drastic dehydration, except in the case of resurrection plants. Therefore, changes in the regulation of genes normally expressed in seeds are thought to be responsible for the evolutionary origin of desiccation tolerance in resurrection plants. Here, we show that constitutive overexpression of the seed-specific HSFA...

متن کامل

Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco

A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to th...

متن کامل

Improved resistance to controlled deterioration in transgenic seeds.

We show that seed-specific overexpression of the sunflower (Helianthus annuus) HaHSFA9 heat stress transcription factor (HSF) in tobacco (Nicotiana tabacum) enhances the accumulation of heat shock proteins (HSPs). Among these proteins were HSP101 and a subset of the small HSPs, including proteins that accumulate only during embryogenesis in the absence of thermal stress. Levels of late embryoge...

متن کامل

The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription.

The regulation of maturation (MAT)- and late embryogenesis (LEA)-specific gene expression in dicots involves factors related to ABI3, a seed-specific component of the abscisic acid signal transduction pathways from Arabidopsis. In French bean (Phaseolus vulgaris), the ABI3-like factor, PvALF, activates transcription from MAT promoters of phytohemagglutinin (DLEC2) and beta-phaseolin (PHS beta) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2017